

    
      
          
            
  
Table of Contents


About


	Overview
	About

	System Requirements

	Integrations

	Support

	Downloads

	Stats





	Setup
	Binaries

	Install

	Usage

	Network

	Arguments

	Shortcuts

	Application List

	Considerations

	HDR Support

	Tutorials and Guides





	Docker
	Important note

	Build your own containers

	Where used

	Port and Volume mappings

	Supported Architectures





	Third Party Packages
	AUR

	Chocolatey

	nixpkgs

	Scoop

	Solus





	Guides
	App Examples

	Linux





	Advanced Usage
	Performance Tips

	Configuration

	General

	Input

	Audio/Video

	Network

	Config Files

	Advanced

	NVIDIA NVENC Encoder

	Intel QuickSync Encoder

	AMD AMF Encoder

	VideoToolbox Encoder

	Software Encoder










GameStream


	GameStream
	Migration

	Internet Streaming

	Limitations










Troubleshooting


	General
	Forgotten Credentials

	Web UI Access

	Nvidia issues





	Linux
	Hardware Encoding fails

	KMS Streaming fails

	Gamescope compatibility





	macOS
	Dynamic session lookup failed





	Windows
	No gamepad detected

	Permission denied










Build


	Build
	Building Locally

	Remote Build





	Linux
	Requirements

	CUDA

	Build





	macOS
	Requirements

	Build





	Windows
	Requirements

	Build










Contributing


	Contributing
	Web UI





	Localization
	CrowdIn

	Extraction





	Testing
	Clang Format

	Sphinx

	Unit Testing










Legal


	Legal
	Commercial Use










source


	Source Code
	Example Documentation Blocks

	Source










History


	Changelog
	0.23.1 - 2024-04-20

	0.23.0 - 2024-04-06

	0.22.2 - 2024-03-15

	0.22.1 - 2024-03-13

	0.22.0 - 2024-03-03

	0.21.0 - 2023-10-15

	0.20.0 - 2023-05-28

	0.19.1 - 2023-03-30

	0.19.0 - 2023-03-29

	0.18.4 - 2023-02-20

	0.18.3 - 2023-02-13

	0.18.2 - 2023-02-13

	0.18.1 - 2023-01-31

	0.18.0 - 2023-01-29

	0.17.0 - 2023-01-08

	0.16.0 - 2022-12-13

	0.15.0 - 2022-10-30

	0.14.1 - 2022-08-09

	0.14.0 - 2022-06-15

	0.13.0 - 2022-02-27

	0.12.0 - 2022-02-13

	0.11.1 - 2021-10-04

	0.11.0 - 2021-10-04

	0.10.1 - 2021-08-21

	0.10.0 - 2021-08-20

	0.9.0 - 2021-07-11

	0.8.0 - 2021-06-30

	0.7.7 - 2021-06-24

	0.7.1 - 2021-06-18

	0.7.0 - 2021-06-16

	0.6.0 - 2021-05-26

	0.5.0 - 2021-05-13

	0.4.0 - 2020-05-03

	0.3.1 - 2020-04-24

	0.3.0 - 2020-04-23

	0.2.0 - 2020-03-21

	0.1.1 - 2020-01-30

	0.1.0 - 2020-01-27












            

          

      

      

    

  

    
      
          
            
  
Overview

LizardByte has the full documentation hosted on Read the Docs [https://sunshinestream.readthedocs.io/].


About

Sunshine is a self-hosted game stream host for Moonlight.
Offering low latency, cloud gaming server capabilities with support for AMD, Intel, and Nvidia GPUs for hardware
encoding. Software encoding is also available. You can connect to Sunshine from any Moonlight client on a variety of
devices. A web UI is provided to allow configuration, and client pairing, from your favorite web browser. Pair from
the local server or any mobile device.



System Requirements


Warning

This table is a work in progress. Do not purchase hardware based on this.



Minimum Requirements







	GPU

	AMD: VCE 1.0 or higher, see: obs-amd hardware support [https://github.com/obsproject/obs-amd-encoder/wiki/Hardware-Support]



	
	Intel: VAAPI-compatible, see: VAAPI hardware support [https://www.intel.com/content/www/us/en/developer/articles/technical/linuxmedia-vaapi.html]



	
	Nvidia: NVENC enabled cards, see: nvenc support matrix [https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new]



	CPU

	AMD: Ryzen 3 or higher



	
	Intel: Core i3 or higher



	RAM

	4GB or more



	OS

	Windows: 10+ (Windows Server does not support virtual gamepads)



	
	macOS: 12+



	
	Linux/Debian: 11 (bullseye)



	
	Linux/Fedora: 38+



	
	Linux/Ubuntu: 22.04+ (jammy)



	Network

	Host: 5GHz, 802.11ac



	
	Client: 5GHz, 802.11ac






4k Suggestions







	GPU

	AMD: Video Coding Engine 3.1 or higher



	
	Intel: HD Graphics 510 or higher



	
	Nvidia: GeForce GTX 1080 or higher



	CPU

	AMD: Ryzen 5 or higher



	
	Intel: Core i5 or higher



	Network

	Host: CAT5e ethernet or better



	
	Client: CAT5e ethernet or better






HDR Suggestions







	GPU

	AMD: Video Coding Engine 3.4 or higher



	
	Intel: UHD Graphics 730 or higher



	
	Nvidia: Pascal-based GPU (GTX 10-series) or higher



	CPU

	AMD: todo



	
	Intel: todo



	Network

	Host: CAT5e ethernet or better



	
	Client: CAT5e ethernet or better








Integrations

[image: GitHub Workflow Status (CI)]
 [https://github.com/LizardByte/Sunshine/actions/workflows/CI.yml?query=branch%3Amaster][image: GitHub Workflow Status (localize)]
 [https://github.com/LizardByte/Sunshine/actions/workflows/localize.yml?query=branch%3Anightly][image: Read the Docs]
 [http://sunshinestream.readthedocs.io/][image: Codecov]
 [https://codecov.io/gh/LizardByte/Sunshine]

Support

Our support methods are listed in our
LizardByte Docs [https://lizardbyte.readthedocs.io/en/latest/about/support.html].



Downloads

[image: GitHub Releases]
 [https://github.com/LizardByte/Sunshine/releases/latest][image: Docker]
 [https://hub.docker.com/r/lizardbyte/sunshine][image: Winget Version]
 [https://github.com/microsoft/winget-pkgs/tree/master/manifests/l/LizardByte/Sunshine]

Stats

[image: GitHub stars]
 [https://github.com/LizardByte/Sunshine]



            

          

      

      

    

  

    
      
          
            
  
Setup

The recommended method for running Sunshine is to use the binaries bundled with the latest release [https://github.com/LizardByte/Sunshine/releases/latest].


Binaries

Binaries of Sunshine are created for each release. They are available for Linux, macOS, and Windows.
Binaries can be found in the latest release [https://github.com/LizardByte/Sunshine/releases/latest].


Tip

Some third party packages also exist. See
Third Party Packages.
No support will be provided for third party packages!





Install


Docker

Warning

The Docker images are not recommended for most users. No support will be provided!



Docker images are available on Dockerhub.io [https://hub.docker.com/repository/docker/lizardbyte/sunshine]
and ghcr.io [https://github.com/orgs/LizardByte/packages?repo_name=sunshine].

See Docker for additional information.



Linux
CUDA Compatibility

CUDA is used for NVFBC capture.


Tip

See CUDA GPUS [https://developer.nvidia.com/cuda-gpus] to cross reference Compute Capability to your GPU.





	Package

	CUDA Version

	Min Driver

	CUDA Compute Capabilities





	sunshine.AppImage

	11.8.0

	450.80.02

	35;50;52;60;61;62;70;75;80;86;90



	sunshine.pkg.tar.zst

	11.8.0

	450.80.02

	35;50;52;60;61;62;70;75;80;86;90



	sunshine_{arch}.flatpak

	12.0.0

	525.60.13

	50;52;60;61;62;70;75;80;86;90



	sunshine-debian-bookworm-{arch}.deb

	12.0.0

	525.60.13

	50;52;60;61;62;70;75;80;86;90



	sunshine-debian-bullseye-{arch}.deb

	11.8.0

	450.80.02

	35;50;52;60;61;62;70;75;80;86;90



	sunshine-fedora-38-{arch}.rpm

	12.4.0

	525.60.13

	50;52;60;61;62;70;75;80;86;90



	sunshine-fedora-39-{arch}.rpm

	12.4.0

	525.60.13

	50;52;60;61;62;70;75;80;86;90



	sunshine-ubuntu-22.04-{arch}.deb

	11.8.0

	450.80.02

	35;50;52;60;61;62;70;75;80;86;90



	sunshine-ubuntu-24.04-{arch}.deb

	11.8.0

	450.80.02

	35;50;52;60;61;62;70;75;80;86;90







AppImage

Caution

Use distro-specific packages instead of the AppImage if they are available.



According to AppImageLint the supported distro matrix of the AppImage is below.


	✔ Debian bullseye


	✔ Debian bookworm


	✔ Debian trixie


	✖ Debian sid


	✔ Ubuntu mantic


	✔ Ubuntu lunar


	✔ Ubuntu jammy


	✔ Ubuntu focal


	✖ Ubuntu bionic


	✖ Ubuntu xenial


	✖ Ubuntu trusty


	✖ CentOS 7





	Download sunshine.AppImage to your home directory.

cd ~
wget https://github.com/LizardByte/Sunshine/releases/latest/download/sunshine.AppImage







	Open terminal and run the following code.

./sunshine.AppImage --install










	Start:
	./sunshine.AppImage --install && ./sunshine.AppImage







	Uninstall:
	./sunshine.AppImage --remove











Arch Linux Package

	Open terminal and run the following code.

wget https://github.com/LizardByte/Sunshine/releases/latest/download/sunshine.pkg.tar.zst
pacman -U --noconfirm sunshine.pkg.tar.zst










	Uninstall:
	pacman -R sunshine











Debian/Ubuntu Package

	Download sunshine-{distro}-{distro-version}-{arch}.deb and run the following code.

sudo apt install -f ./sunshine-{distro}-{distro-version}-{arch}.deb






Note

The {distro-version} is the version of the distro we built the package on. The {arch} is the
architecture of your operating system.




Tip

You can double click the deb file to see details about the package and begin installation.








	Uninstall:
	sudo apt remove sunshine











Flatpak Package

Caution

Use distro-specific packages instead of the Flatpak if they are available.




Important

The instructions provided here are for the version supplied in the latest release [https://github.com/LizardByte/Sunshine/releases/latest], which does
not necessarily match the version in the Flathub repository!




	Install Flatpak [https://flatpak.org/setup/] as required.


	Download sunshine_{arch}.flatpak and run the following code.


Note

Be sure to replace {arch} with the architecture for your operating system.




	System level (recommended)
	flatpak install --system ./sunshine_{arch}.flatpak







	User level
	flatpak install --user ./sunshine_{arch}.flatpak







	Additional installation (required)
	flatpak run --command=additional-install.sh dev.lizardbyte.sunshine














	Start:
	
	X11 and NVFBC capture (X11 Only)
	flatpak run dev.lizardbyte.sunshine







	KMS capture (Wayland & X11)
	sudo -i PULSE_SERVER=unix:$(pactl info | awk '/Server String/{print$3}') \
  flatpak run dev.lizardbyte.sunshine











	Uninstall:
	flatpak run --command=remove-additional-install.sh dev.lizardbyte.sunshine
flatpak uninstall --delete-data dev.lizardbyte.sunshine











RPM Package

	Add rpmfusion repositories by running the following code.

sudo dnf install \
  https://mirrors.rpmfusion.org/free/fedora/rpmfusion-free-release-$(rpm -E %fedora).noarch.rpm \
  https://mirrors.rpmfusion.org/nonfree/fedora/rpmfusion-nonfree-release-$(rpm -E %fedora).noarch.rpm







	Download sunshine-{distro}-{distro-version}-{arch}.rpm and run the following code.

sudo dnf install ./sunshine-{distro}-{distro-version}-{arch}.rpm






Note

The {distro-version} is the version of the distro we built the package on. The {arch} is the
architecture of your operating system.




Tip

You can double click the rpm file to see details about the package and begin installation.








	Uninstall:
	sudo dnf remove sunshine












  
    
    

    Docker
    

    

    

    

    
 
  

    
      
          
            
  
Docker


Important note

Starting with v0.18.0, tag names have changed. You may no longer use latest, master, vX.X.X.



Build your own containers

This image provides a method for you to easily use the latest Sunshine release in your own docker projects. It is not
intended to use as a standalone container at this point, and should be considered experimental.

ARG SUNSHINE_VERSION=latest
ARG SUNSHINE_OS=ubuntu-22.04
FROM lizardbyte/sunshine:${SUNSHINE_VERSION}-${SUNSHINE_OS}

# install Steam, Wayland, etc.

ENTRYPOINT steam && sunshine






SUNSHINE_VERSION


	latest, master, vX.X.X


	nightly


	commit hash






SUNSHINE_OS

Sunshine images are available with the following tag suffixes, based on their respective base images.


	archlinux


	debian-bullseye


	fedora-36


	fedora-37


	ubuntu-20.04


	ubuntu-22.04






Tags

You must combine the SUNSHINE_VERSION and SUNSHINE_OS to determine the tag to pull. The format should be
<SUNSHINE_VERSION>-<SUNSHINE_OS>. For example, latest-ubuntu-22.04.

See all our available tags on docker hub [https://hub.docker.com/r/lizardbyte/sunshine/tags] or
ghcr [https://github.com/LizardByte/Sunshine/pkgs/container/sunshine/versions] for more info.




Where used

This is a list of docker projects using Sunshine. Something missing? Let us know about it!


	Games on Whales [https://games-on-whales.github.io]






Port and Volume mappings

Examples are below of the required mappings. The configuration file will be saved to /config in the container.


Using docker run

Create and run the container (substitute your <values>):

docker run -d \
  --device /dev/dri/ \
  --name=<image_name> \
  --restart=unless-stopped \
  -e PUID=<uid> \
  -e PGID=<gid> \
  -e TZ=<timezone> \
  -v <path to data>:/config \
  -p 47984-47990:47984-47990/tcp \
  -p 48010:48010 \
  -p 47998-48000:47998-48000/udp \
  <image>







Using docker-compose

Create a docker-compose.yml file with the following contents (substitute your <values>):

version: '3'
services:
  <image_name>:
    image: <image>
    container_name: sunshine
    restart: unless-stopped
    volumes:
      - <path to data>:/config
    environment:
      - PUID=<uid>
      - PGID=<gid>
      - TZ=<timezone>
    ports:
      - "47984-47990:47984-47990/tcp"
      - "48010:48010"
      - "47998-48000:47998-48000/udp"







Using podman run

Create and run the container (substitute your <values>):

podman run -d \
  --device /dev/dri/ \
  --name=<image_name> \
  --restart=unless-stopped \
  --userns=keep-id \
  -e PUID=<uid> \
  -e PGID=<gid> \
  -e TZ=<timezone> \
  -v <path to data>:/config \
  -p 47984-47990:47984-47990/tcp \
  -p 48010:48010 \
  -p 47998-48000:47998-48000/udp \
  <image>







Parameters

You must substitute the <values> with your own settings.

Parameters are split into two halves separated by a colon. The left side represents the host and the right side the
container.

Example: -p external:internal - This shows the port mapping from internal to external of the container.
Therefore -p 47990:47990 would expose port 47990 from inside the container to be accessible from the host’s IP on
port 47990 (e.g. http://<host_ip>:47990). The internal port must be 47990, but the external port may be changed
(e.g. -p 8080:47990). All the ports listed in the docker run and docker-compose examples are required.



	Parameter

	Function

	Example Value

	Required





	-p <port>:47990

	Web UI Port

	47990

	True



	-v <path to data>:/config

	Volume mapping

	/home/sunshine

	True



	-e PUID=<uid>

	User ID

	1001

	False



	-e PGID=<gid>

	Group ID

	1001

	False



	-e TZ=<timezone>

	Lookup TZ value [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones]

	America/New_York

	False







User / Group Identifiers:

When using data volumes (-v flags) permissions issues can arise between the host OS and the container. To avoid this
issue you can specify the user PUID and group PGID. Ensure the data volume directory on the host is owned by the same
user you specify.

In this instance PUID=1001 and PGID=1001. To find yours use id user as below:

$ id dockeruser
uid=1001(dockeruser) gid=1001(dockergroup) groups=1001(dockergroup)





If you want to change the PUID or PGID after the image has been built, it will require rebuilding the image.





Supported Architectures

Specifying lizardbyte/sunshine:latest-<SUNSHINE_OS> or ghcr.io/lizardbyte/sunshine:latest-<SUNSHINE_OS> should
retrieve the correct image for your architecture.

The architectures supported by these images are shown in the table below.



	tag suffix

	amd64/x86_64

	arm64/aarch64





	archlinux

	✅

	❌



	debian-bookworm

	✅

	✅



	debian-bullseye

	✅

	✅



	fedora-38

	✅

	✅



	fedora-39

	✅

	✅



	ubuntu-20.04

	✅

	✅



	ubuntu-22.04

	✅

	✅










            

          

      

      

    

  

  
    
    

    Third Party Packages
    

    

    

    

    
 
  

    
      
          
            
  
Third Party Packages


Danger

These packages are not maintained by LizardByte. Use at your own risk.




AUR

[image: AUR votes]
 [https://aur.archlinux.org/packages/sunshine]

Chocolatey

[image: Chocolatey Version]
 [https://community.chocolatey.org/packages/sunshine]

nixpkgs

[image: nixpgs Version]
 [https://github.com/NixOS/nixpkgs/blob/nixos-unstable/pkgs/servers/sunshine/default.nix]

Scoop

[image: Scoop Version (extras bucket)]
 [https://scoop.sh/#/apps?s=0&d=1&o=true&q=sunshine]

Solus

[image: Solus Version]
 [https://dev.getsol.us/source/sunshine]



            

          

      

      

    

  

  
    
    

    Guides
    

    

    

    

    
 
  

    
      
          
            
  
Guides

Collection of guides written by the community!



	App Examples
	Common Examples

	Prep Commands

	Additional Considerations





	Linux
	How to not stream Discord call audio

	Remote SSH Headless Setup












            

          

      

      

    

  

  
    
    

    App Examples
    

    

    

    

    
 
  

    
      
          
            
  
App Examples

Since not all applications behave the same, we decided to create some examples to help you get started adding games
and applications to Sunshine.


Attention

Throughout these examples, any fields not shown are left blank. You can enhance your experience by
adding an image or a log file (via the Output field).




Note

When a working directory is not specified, it defaults to the folder where the target application resides.




Common Examples


Desktop



	Field

	Value



	Application Name

	Desktop



	Image

	desktop.png








Steam Big Picture


Note

Steam is launched as a detached command because Steam starts with a process that self updates itself and the original
process is killed.




Linux


	Application Name

	Steam Big Picture



	Detached Commands

	setsid steam steam://open/bigpicture



	Image

	steam.png








macOS


	Application Name

	Steam Big Picture



	Detached Commands

	open steam://open/bigpicture



	Image

	steam.png








Windows


	Application Name

	Steam Big Picture



	Command

	steam://open/bigpicture



	Image

	steam.png









  
    
    

    Linux
    

    

    

    

    
 
  

    
      
          
            
  
Linux

Collection of Sunshine Linux host guides.



	How to not stream Discord call audio

	Remote SSH Headless Setup








            

          

      

      

    

  

  
    
    

    How to not stream Discord call audio
    

    

    

    

    
 
  

    
      
          
            
  
How to not stream Discord call audio


	Set your normal Sound Output volume to 100%

[image: ../../../_images/discord_calls_01.png]


	Start Sunshine


	Set Sound Output to sink-sunshine-stereo (if it isn’t automatic)

[image: ../../../_images/discord_calls_02.png]


	In Discord - Right Click - Deafen - Select your normal Output Device

This is also where you will need to adjust output volume for Discord calls

[image: ../../../_images/discord_calls_03.png]


	Open qpwgraph

[image: ../../../_images/discord_calls_04.png]


	Connect sunshine [sunshine-record] to your normal Output Device


	Drag monitor_FL to playback_FL


	Drag monitor_FR to playback_FR




[image: ../../../_images/discord_calls_05.png]







            

          

      

      

    

  

  
    
    

    Remote SSH Headless Setup
    

    

    

    

    
 
  

    
      
          
            
  
Remote SSH Headless Setup


Remote SSH Headless Setup

	Author

	Eric Dong [https://github.com/e-dong]



	Difficulty

	Intermediate






This is a guide to setup remote SSH into host to startup X server and sunshine without physical login and dummy plug.
The virtual display is accelerated by the NVidia GPU using the TwinView configuration.


Attention

This guide is specific for Xorg and NVidia GPUs. I start the X server using the startx command.
I also only tested this on an Artix runit init system on LAN.
I didn’t have to do anything special with pulseaudio (pipewire untested).

Keep your monitors plugged in until the Checkpoint step




Tip

Prior to editing any system configurations, you should make a copy of the original file.
This will allow you to use it for reference or revert your changes easily.




The Big Picture

Once you are done, you will need to perform these 3 steps:


	Turn on the host machine


	Start sunshine on remote host with a script that:


	Edits permissions of /dev/uinput (added sudo config to execute script with no password prompt)


	Starts X server with startx on virtual display


	Starts Sunshine






	Startup Moonlight on the client of interest and connect to host





Hint

As an alternative to SSH…

Step 2 can be replaced with autologin and starting sunshine as a service or putting
sunshine & in your .xinitrc file if you start your X server with startx.
In this case, the workaround for /dev/uinput permissions is not needed because the udev rule would be triggered
for “physical” login. See Linux Setup. I personally think autologin compromises the
security of the PC, so I went with the remote SSH route. I use the PC more than for gaming, so I don’t need a
virtual display everytime I turn on the PC (E.g running updates, config changes, file/media server).



First we will setup the host and then the SSH Client (Which may not be the same as the machine running the
moonlight client)



Host Setup

We will be setting up:


	Static IP Setup


	SSH Server Setup


	Virtual Display Setup


	Uinput Permissions Workaround


	Stream Launcher Script





Static IP Setup

Setup static IP Address for host. For LAN connections you can use DHCP reservation within your assigned range.
e.g. 192.168.x.x. This will allow you to ssh to the host consistently, so the assigned IP address does
not change. It is preferred to set this through your router config.



SSH Server Setup


Note

Most distros have OpenSSH already installed. If it is not present, install OpenSSH using your package manager.




Debian/Ubuntu
sudo apt update
sudo apt install openssh-server







Arch/Artix
sudo pacman -S openssh
# Install  openssh-<other_init> if you are not using SystemD
# e.g. sudo pacman -S openssh-runit







Alpine
sudo apk update
sudo apk add openssh







CentOS/RHEL/Fedora

	CentOS/RHEL 7
	sudo yum install openssh-server







	CentOS/Fedora/RHEL 8
	sudo dnf install openssh-server












  
    
    

    Advanced Usage
    

    

    

    

    
 
  

    
      
          
            
  
Advanced Usage

Sunshine will work with the default settings for most users. In some cases you may want to configure Sunshine further.


Performance Tips


AMD
In Windows, enabling Enhanced Sync in AMD’s settings may help reduce the latency by an additional frame. This
applies to amfenc and libx264.



NVIDIA
Enabling Fast Sync in Nvidia settings may help reduce latency.




  
    
    

    GameStream
    

    

    

    

    
 
  

    
      
          
            
  
GameStream

Nvidia announced that their GameStream service for Nvidia Games clients will be discontinued in February 2023.
Luckily, Sunshine performance is now on par with Nvidia GameStream. Many users have even reported that Sunshine
outperforms GameStream, so rest assured that Sunshine will be equally performant moving forward.


Migration

We have developed a simple migration tool to help you migrate your GameStream games and apps to Sunshine automatically.
Please check out our GSMS [https://github.com/LizardByte/GSMS] project if you’re interested in an automated
migration option. GSMS offers the ability to migrate your custom and auto-detected games and apps. The
working directory, command, and image are all set in Sunshine’s apps.json file. The box-art image is also copied
to a specified directory.



Internet Streaming

If you are using the Moonlight Internet Hosting Tool, you can remove it from your system when you migrate to Sunshine.
To stream over the Internet with Sunshine and a UPnP-capable router, enable the UPnP option in the Sunshine Web UI.


Note

Running Sunshine together with versions of the Moonlight Internet Hosting Tool prior to v5.6 will cause UPnP
port forwarding to become unreliable. Either uninstall the tool entirely or update it to v5.6 or later.





Limitations

Sunshine does have some limitations, as compared to Nvidia GameStream.


	Automatic game/application list.


	Changing game settings automatically, to optimize streaming.








            

          

      

      

    

  

  
    
    

    General
    

    

    

    

    
 
  

    
      
          
            
  
General


Forgotten Credentials


	If you forgot your credentials to the web UI, try this.
	
General
sunshine --creds {new-username} {new-password}







AppImage
./sunshine.AppImage --creds {new-username} {new-password}







Flatpak
flatpak run --command=sunshine dev.lizardbyte.Sunshine --creds {new-username} {new-password}








  
    
    

    Linux
    

    

    

    

    
 
  

    
      
          
            
  
Linux


Hardware Encoding fails

Due to legal concerns, Mesa has disabled hardware decoding and encoding by default.

Error: Could not open codec [h264_vaapi]: Function not implemented





If you see the above error in the Sunshine logs, compiling Mesa
manually, may be required. See the official Mesa3D Compiling and Installing [https://docs.mesa3d.org/install.html]
documentation for instructions.


Important

You must re-enable the disabled encoders. You can do so, by passing the following argument to the build
system. You may also want to enable decoders, however that is not required for Sunshine and is not covered here.

-Dvideo-codecs=h264enc,h265enc








Note

Other build options are listed in the
meson options [https://gitlab.freedesktop.org/mesa/mesa/-/blob/main/meson_options.txt] file.





KMS Streaming fails


	If screencasting fails with KMS, you may need to run the following to force unprivileged screencasting.
	sudo setcap -r $(readlink -f $(which sunshine))











Gamescope compatibility

Some users have reported stuttering issues when streaming games running within Gamescope.





            

          

      

      

    

  

  
    
    

    macOS
    

    

    

    

    
 
  

    
      
          
            
  
macOS


Dynamic session lookup failed


	If you get this error:
	
Dynamic session lookup supported but failed: launchd did not provide a socket path, verify that
org.freedesktop.dbus-session.plist is loaded!





	Try this.
	launchctl load -w /Library/LaunchAgents/org.freedesktop.dbus-session.plist

















            

          

      

      

    

  

  
    
    

    Windows
    

    

    

    

    
 
  

    
      
          
            
  
Windows


No gamepad detected


	Verify that you’ve installed Nefarius Virtual Gamepad [https://github.com/nefarius/ViGEmBus/releases/latest].






Permission denied

Since Sunshine runs as a service on Windows, it may not have the same level of access that your regular user account
has. You may get permission denied errors when attempting to launch a game or application from a non system drive.

You will need to modify the security permissions on your disk. Ensure that user/principal SYSTEM has full
permissions on the disk.





            

          

      

      

    

  

  
    
    

    Build
    

    

    

    

    
 
  

    
      
          
            
  
Build

Sunshine binaries are built using CMake [https://cmake.org/]. Cross compilation is not
supported. That means the binaries must be built on the target operating system and architecture.


Building Locally


Clone


	Ensure git [https://git-scm.com/] is installed and run the following:
	git clone https://github.com/lizardbyte/sunshine.git --recurse-submodules
cd sunshine && mkdir build && cd build











Compile

See the section specific to your OS.


	Linux


	macOS


	Windows







Remote Build

It may be beneficial to build remotely in some cases. This will enable easier building on different operating systems.


	Fork the project


	Activate workflows


	Trigger the CI workflow manually


	Download the artifacts/binaries from the workflow run summary








            

          

      

      

    

  

  
    
    

    Linux
    

    

    

    

    
 
  

    
      
          
            
  
Linux


Requirements


Debian Bullseye/Bookworm

End of Life (Bullseye): July, 2024
End of Life (Bookworm): TBD


	Install Requirements
	sudo apt update && sudo apt install \
    build-essential \
    cmake \
    libayatana-appindicator3-dev \
    libboost-filesystem-dev \
    libboost-locale-dev \
    libboost-log-dev \
    libboost-program-options-dev \
    libcap-dev \  # KMS
    libcurl4-openssl-dev \
    libdrm-dev \  # KMS
    libevdev-dev \
    libminiupnpc-dev \
    libmfx-dev \  # x86_64 only
    libnotify-dev \
    libnuma-dev \
    libopus-dev \
    libpulse-dev \
    libssl-dev \
    libva-dev \  # VA-API
    libvdpau-dev \
    libwayland-dev \  # Wayland
    libx11-dev \  # X11
    libxcb-shm0-dev \  # X11
    libxcb-xfixes0-dev \  # X11
    libxcb1-dev \  # X11
    libxfixes-dev \  # X11
    libxrandr-dev \  # X11
    libxtst-dev \  # X11
    nodejs \
    npm \
    nvidia-cuda-dev \  # Cuda, NvFBC
    nvidia-cuda-toolkit  # Cuda, NvFBC











Fedora 38, 39


	Install Requirements
	sudo dnf update && \
sudo dnf group install "Development Tools" && \
sudo dnf install \
    boost-devel \
    cmake \
    gcc \
    gcc-c++ \
    intel-mediasdk-devel \ # x86_64 only
    libappindicator-gtk3-devel \
    libcap-devel \
    libcurl-devel \
    libdrm-devel \
    libevdev-devel \
    libnotify-devel \
    libva-devel \  # VA-API
    libvdpau-devel \
    libX11-devel \  # X11
    libxcb-devel \  # X11
    libXcursor-devel \  # X11
    libXfixes-devel \  # X11
    libXi-devel \  # X11
    libXinerama-devel \  # X11
    libXrandr-devel \  # X11
    libXtst-devel \  # X11
    mesa-libGL-devel \
    miniupnpc-devel \
    npm \
    numactl-devel \
    openssl-devel \
    opus-devel \
    pulseaudio-libs-devel \
    rpm-build \  # if you want to build an RPM binary package
    wget \  # necessary for cuda install with `run` file
    which   # necessary for cuda install with `run` file











Ubuntu 22.04


	Install Requirements
	sudo apt update && sudo apt install \
    build-essential \
    cmake \
    libappindicator3-dev \
    libboost-filesystem-dev \
    libboost-locale-dev \
    libboost-log-dev \
    libboost-program-options-dev \
    libcap-dev \  # KMS
    libcurl4-openssl-dev \
    libdrm-dev \  # KMS
    libevdev-dev \
    libminiupnpc-dev \
    libmfx-dev \  # x86_64 only
    libnotify-dev \
    libnuma-dev \
    libopus-dev \
    libpulse-dev \
    libssl-dev \
    libva-dev \  # VA-API
    libwayland-dev \  # Wayland
    libx11-dev \  # X11
    libxcb-shm0-dev \  # X11
    libxcb-xfixes0-dev \  # X11
    libxcb1-dev \  # X11
    libxfixes-dev \  # X11
    libxrandr-dev \  # X11
    libxtst-dev \  # X11
    nodejs \
    npm \
    nvidia-cuda-dev \  # CUDA, NvFBC
    nvidia-cuda-toolkit  # CUDA, NvFBC











Ubuntu 24.04


	Install Requirements
	sudo apt update && sudo apt install \
    build-essential \
    cmake \
    gcc-11 \
    g++-11 \
    libappindicator3-dev \
    libboost-filesystem-dev \
    libboost-locale-dev \
    libboost-log-dev \
    libboost-program-options-dev \
    libcap-dev \  # KMS
    libcurl4-openssl-dev \
    libdrm-dev \  # KMS
    libevdev-dev \
    libminiupnpc-dev \
    libmfx-dev \  # x86_64 only
    libnotify-dev \
    libnuma-dev \
    libopus-dev \
    libpulse-dev \
    libssl-dev \
    libva-dev \  # VA-API
    libwayland-dev \  # Wayland
    libx11-dev \  # X11
    libxcb-shm0-dev \  # X11
    libxcb-xfixes0-dev \  # X11
    libxcb1-dev \  # X11
    libxfixes-dev \  # X11
    libxrandr-dev \  # X11
    libxtst-dev \  # X11
    nodejs \
    npm \
    nvidia-cuda-dev \  # CUDA, NvFBC
    nvidia-cuda-toolkit  # CUDA, NvFBC







	Update gcc alias
	update-alternatives --install \
  /usr/bin/gcc gcc /usr/bin/gcc-11 100 \
  --slave /usr/bin/g++ g++ /usr/bin/g++-11 \
  --slave /usr/bin/gcov gcov /usr/bin/gcov-11 \
  --slave /usr/bin/gcc-ar gcc-ar /usr/bin/gcc-ar-11 \
  --slave /usr/bin/gcc-ranlib gcc-ranlib /usr/bin/gcc-ranlib-11












CUDA

If the version of CUDA available from your distro is not adequate, manually install CUDA.


Tip

The version of CUDA you use will determine compatibility with various GPU generations.
At the time of writing, the recommended version to use is CUDA ~11.8.
See CUDA compatibility [https://docs.nvidia.com/depl