

Table of Contents

About

	Overview
	About

	System Requirements

	Integrations

	Support

	Downloads

	Stats

	Installation
	Binaries

	Docker

	Linux

	macOS

	Windows

	Docker
	Important note

	Build your own containers

	Where used

	Port and Volume mappings

	Supported Architectures

	Third Party Packages
	Chocolatey

	nixpkgs

	Scoop

	Solus

	Winget

	Legacy GitHub Repo

	Usage
	Network

	Arguments

	Setup

	Shortcuts

	Application List

	Considerations

	HDR Support

	Tutorials

	Advanced Usage
	Performance Tips

	Configuration

	General

	Controls

	Display

	Audio

	Network

	Encoding

	Advanced

GameStream

	GameStream
	Migration

	Limitations

Troubleshooting

	General
	Forgotten Credentials

	Web UI Access

	Nvidia issues

	Linux
	KMS Streaming fails

	macOS
	Dynamic session lookup failed

	Windows
	No gamepad detected

Build

	Build
	Building Locally

	Remote Build

	Linux
	Requirements

	CUDA

	npm dependencies

	Build

	macOS
	Requirements

	npm dependencies

	Build

	Windows
	Requirements

	npm dependencies

	Build

Contributing

	Contributing

	Localization
	CrowdIn

	Extraction

	Testing
	Clang Format

	Sphinx

	Unit Testing

Legal

	Legal
	Commercial Use

Overview

LizardByte has the full documentation hosted on Read the Docs [https://sunshinestream.readthedocs.io/].

About

Sunshine is a self-hosted game stream host for Moonlight.
Offering low latency, cloud gaming server capabilities with support for AMD, Intel, and Nvidia GPUs for hardware
encoding. Software encoding is also available. You can connect to Sunshine from any Moonlight client on a variety of
devices. A web UI is provided to allow configuration, and client pairing, from your favorite web browser. Pair from
the local server or any mobile device.

System Requirements

Warning

This table is a work in progress. Do not purchase hardware based on this.

Minimum Requirements

	GPU

	AMD: VCE 1.0 or higher, see obs-amd hardware support [https://github.com/obsproject/obs-amd-encoder/wiki/Hardware-Support]

	Intel: VAAPI-compatible, see: VAAPI hardware support [https://www.intel.com/content/www/us/en/developer/articles/technical/linuxmedia-vaapi.html]

	Nvidia: NVENC enabled cards, see nvenc support matrix [https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new]

	CPU

	AMD: Ryzen 3 or higher

	Intel: Core i3 or higher

	RAM

	4GB or more

	OS

	Windows: 10+ (Windows Server not supported)

	macOS: 11.7+

	Linux/Debian: 11 (bullseye)

	Linux/Fedora: 36+

	Linux/Ubuntu: 20.04+ (focal)

	Network

	Host: 5GHz, 802.11ac

	Client: 5GHz, 802.11ac

4k Suggestions

	GPU

	AMD: Video Coding Engine 3.1 or higher

	Intel: HD Graphics 510 or higher

	Nvidia: GeForce GTX 1080 or higher

	CPU

	AMD: Ryzen 5 or higher

	Intel: Core i5 or higher

	Network

	Host: CAT5e ethernet or better

	Client: CAT5e ethernet or better

HDR Suggestions

	GPU

	AMD: Video Coding Engine 3.4 or higher

	Intel: UHD Graphics 730 or higher

	Nvidia: Pascal-based GPU (GTX 10-series) or higher

	CPU

	AMD: todo

	Intel: todo

	Network

	Host: CAT5e ethernet or better

	Client: CAT5e ethernet or better

Integrations

[image: GitHub Workflow Status (CI)]
 [https://github.com/LizardByte/Sunshine/actions/workflows/CI.yml?query=branch%3Amaster][image: GitHub Workflow Status (localize)]
 [https://github.com/LizardByte/Sunshine/actions/workflows/localize.yml?query=branch%3Anightly][image: Read the Docs]
 [http://sunshinestream.readthedocs.io/][image: CrowdIn]
 [https://crowdin.com/project/sunshinestream]

Support

Our support methods are listed in our
LizardByte Docs [https://lizardbyte.readthedocs.io/en/latest/about/support.html].

Downloads

[image: GitHub Releases]
 [https://github.com/LizardByte/Sunshine/releases/latest][image: Docker]
 [https://hub.docker.com/r/lizardbyte/sunshine]

Stats

[image: GitHub stars]
 [https://github.com/LizardByte/Sunshine][image: AUR votes]
 [https://aur.archlinux.org/packages/sunshine]

Installation

The recommended method for running Sunshine is to use the binaries bundled with the latest release [https://github.com/LizardByte/Sunshine/releases/latest].

Attention

Additional setup is required after installation. See
Setup.

Binaries

Binaries of Sunshine are created for each release. They are available for Linux, macOS, and Windows.
Binaries can be found in the latest release [https://github.com/LizardByte/Sunshine/releases/latest].

Tip

Some third party packages also exist. See
Third Party Packages.

Docker

Docker images are available on Dockerhub.io [https://hub.docker.com/repository/docker/lizardbyte/sunshine] and ghcr.io [https://github.com/orgs/LizardByte/packages?repo_name=sunshine].

See Docker for additional information.

Linux

Follow the instructions for your preferred package type below.

CUDA Compatibility

CUDA is used for NVFBC capture.

Tip

See CUDA GPUS [https://developer.nvidia.com/cuda-gpus] to cross reference Compute Capability to your GPU.

	Package

	CUDA Version

	Min Driver

	CUDA Compute Capabilities

	https://aur.archlinux.org/packages/sunshine

	User dependent

	User dependent

	User dependent

	sunshine.AppImage

	11.8.0

	450.80.02

	50;52;60;61;62;70;75;80;86;90;35

	sunshine_{arch}.flatpak

	11.8.0

	450.80.02

	50;52;60;61;62;70;75;80;86;90;35

	sunshine-debian-bullseye-{arch}.deb

	11.8.0

	450.80.02

	50;52;60;61;62;70;75;80;86;90;35

	sunshine-fedora-36-{arch}.rpm

	12.0.0

	525.60.13

	50;52;60;61;62;70;75;80;86;90

	sunshine-fedora-37-{arch}.rpm

	12.0.0

	525.60.13

	50;52;60;61;62;70;75;80;86;90

	sunshine-ubuntu-20.04-{arch}.deb

	11.8.0

	450.80.02

	50;52;60;61;62;70;75;80;86;90;35

	sunshine-ubuntu-22.04-{arch}.deb

	11.8.0

	450.80.02

	50;52;60;61;62;70;75;80;86;90;35

AppImage

According to AppImageLint the supported distro matrix of the AppImage is below.

	[✖] Debian oldstable (buster)

	[✔] Debian stable (bullseye)

	[✔] Debian testing (bookworm)

	[✔] Debian unstable (sid)

	[✔] Ubuntu kinetic

	[✔] Ubuntu jammy

	[✔] Ubuntu focal

	[✖] Ubuntu bionic

	[✖] Ubuntu xenial

	[✖] Ubuntu trusty

	[✖] CentOS 7

	Download sunshine.AppImage to your home directory.

	Open terminal and run the following code.

./sunshine.AppImage --install

	Start:
	./sunshine.AppImage --install && ./sunshine.AppImage

	Uninstall:
	./sunshine.AppImage --remove

AUR Package

	Open terminal and run the following code.

git clone https://aur.archlinux.org/sunshine.git
cd sunshine
makepkg -fi

	Uninstall:
	pacman -R sunshine

Debian Package

	Download sunshine-{ubuntu-version}.deb and run the following code.

sudo apt install -f ./sunshine-{ubuntu-version}.deb

Note

The {ubuntu-version} is the version of ubuntu we built the package on. If you are not using Ubuntu and
have an issue with one package, you can try another.

Tip

You can double click the deb file to see details about the package and begin installation.

	Uninstall:
	sudo apt remove sunshine

Flatpak Package

	Install Flatpak [https://flatpak.org/setup/] as required.

	Download sunshine_{arch}.flatpak and run the following code.

Note

Be sure to replace {arch} with the architecture for your operating system.

	System level (recommended)
	flatpak install --system ./sunshine_{arch}.flatpak

	User level
	flatpak install --user ./sunshine_{arch}.flatpak

	Additional installation (required)
	flatpak run --command=additional-install.sh dev.lizardbyte.sunshine

	Start:
	
	X11 and NVFBC capture (X11 Only)
	flatpak run dev.lizardbyte.sunshine

	KMS capture (Wayland & X11)
	sudo -i PULSE_SERVER=unix:$(pactl info | awk '/Server String/{print$3}') flatpak run dev.lizardbyte.sunshine

	Uninstall:
	flatpak run --command=remove-additional-install.sh dev.lizardbyte.sunshine
flatpak uninstall --delete-data dev.lizardbyte.sunshine

RPM Package

	Add rpmfusion repositories by running the following code.

sudo dnf install https://mirrors.rpmfusion.org/free/fedora/rpmfusion-free-release-$(rpm -E %fedora).noarch.rpm \
https://mirrors.rpmfusion.org/nonfree/fedora/rpmfusion-nonfree-release-$(rpm -E %fedora).noarch.rpm

	Download sunshine.rpm and run the following code.

sudo dnf install ./sunshine.rpm

Tip

You can double click the rpm file to see details about the package and begin installation.

	Uninstall:
	sudo dnf remove sunshine

macOS

Sunshine on macOS is experimental. Gamepads do not work. Other features may not work as expected.

pkg

Warning

The pkg does not include runtime dependencies.

	Download the sunshine.pkg file and install it as normal.

	Uninstall:
	cd /etc/sunshine/assets
uninstall_pkg.sh

Portfile

	Install MacPorts [https://www.macports.org]

	Update the Macports sources.

sudo nano /opt/local/etc/macports/sources.conf

	Add this line, replacing your username, below the line that starts with rsync.
	file:///Users/<username>/ports

Ctrl+x, then Y to exit and save changes.

	Download the Portfile to ~/Downloads and run the following code.

mkdir -p ~/ports/multimedia/sunshine
mv ~/Downloads/Portfile ~/ports/multimedia/sunshine/
cd ~/ports
portindex
sudo port install sunshine

	The first time you start Sunshine, you will be asked to grant access to screen recording and your microphone.

	Uninstall:
	sudo port uninstall sunshine

Windows

Installer

	Download and install sunshine-windows.exe

Attention

You should carefully select or unselect the options you want to install. Do not blindly install or enable
features.

To uninstall, find Sunshine in the list here and select “Uninstall” from the overflow
menu. Different versions of Windows may provide slightly different steps for uninstall.

Standalone

	Download and extract sunshine-windows.zip

To uninstall, delete the extracted directory which contains the sunshine.exe file.

Docker

Important note

Starting with v0.18.0, tag names have changed. You may no longer use latest, master, vX.X.X.

Build your own containers

This image provides a method for you to easily use the latest Sunshine release in your own docker projects. It is not
intended to use as a standalone container at this point, and should be considered experimental.

ARG SUNSHINE_VERSION=latest
ARG SUNSHINE_OS=ubuntu-22.04
FROM lizardbyte/sunshine:${SUNSHINE_VERSION}-${SUNSHINE_OS}

install Steam, Wayland, etc.

ENTRYPOINT steam && sunshine

SUNSHINE_VERSION

	latest, master, vX.X.X

	nightly

	commit hash

SUNSHINE_OS

Sunshine images are available, based on the following base images.

	debian-bullseye

	fedora-36

	fedora-37

	ubuntu-20.04

	ubuntu-22.04

Tags

You must combine the SUNSHINE_VERSION and SUNSHINE_OS to determine the tag to pull. The format should be
<SUNSHINE_VERSION>-<SUNSHINE_OS>. For example, latest-ubuntu-22.04.

See all our available tags on docker hub [https://hub.docker.com/r/lizardbyte/sunshine/tags] or
ghcr [https://github.com/LizardByte/Sunshine/pkgs/container/sunshine/versions] for more info.

Where used

This is a list of docker projects using Sunshine. Something missing? Let us know about it!

	Games on Whales [https://games-on-whales.github.io]

Port and Volume mappings

Examples are below of the required mappings. The configuration file will be saved to /config in the container.

Using docker run

Create and run the container (substitute your <values>):

docker run -d \
 --name=<image_name> \
 --restart=unless-stopped
 -e PUID=<uid> \
 -e PGID=<gid> \
 -e TZ=<timezone> \
 -v <path to data>:/config \
 -p 47984-47990:47984-47990/tcp \
 -p 48010:48010 \
 -p 47998-48000:47998-48000/udp \
 <image>

Using docker-compose

Create a docker-compose.yml file with the following contents (substitute your <values>):

version: '3'
services:
 <image_name>:
 image: <image>
 container_name: sunshine
 restart: unless-stopped
 volumes:
 - <path to data>:/config
 environment:
 - PUID=<uid>
 - PGID=<gid>
 - TZ=<timezone>
 ports:
 - "47984-47990:47984-47990/tcp"
 - "48010:48010"
 - "47998-48000:47998-48000/udp"

Parameters

You must substitute the <values> with your own settings.

Parameters are split into two halves separated by a colon. The left side represents the host and the right side the
container.

Example: -p external:internal - This shows the port mapping from internal to external of the container.
Therefore -p 47990:47990 would expose port 47990 from inside the container to be accessible from the host’s IP on
port 47990 (e.g. http://<host_ip>:47990). The internal port must be 47990, but the external port may be changed
(e.g. -p 8080:47990). All the ports listed in the docker run and docker-compose examples are required.

	Parameter

	Function

	Example Value

	Required

	-p <port>:47990

	Web UI Port

	47990

	True

	-v <path to data>:/config

	Volume mapping

	/home/sunshine

	True

	-e PUID=<uid>

	User ID

	1001

	False

	-e PGID=<gid>

	Group ID

	1001

	False

	-e TZ=<timezone>

	Lookup TZ value [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones]

	America/New_York

	False

User / Group Identifiers:

When using data volumes (-v flags) permissions issues can arise between the host OS and the container. To avoid this
issue you can specify the user PUID and group PGID. Ensure the data volume directory on the host is owned by the same
user you specify.

In this instance PUID=1001 and PGID=1001. To find yours use id user as below:

$ id dockeruser
uid=1001(dockeruser) gid=1001(dockergroup) groups=1001(dockergroup)

If you want to change the PUID or PGID after the image has been built, it will require rebuilding the image.

Supported Architectures

Specifying lizardbyte/sunshine:latest-<SUNSHINE_OS> or ghcr.io/lizardbyte/sunshine:latest-<SUNSHINE_OS> should
retrieve the correct image for your architecture.

The architectures supported by these images are:

	Architecture

	Available

	amd64 / x86_64

	✅

	arm64 / aarch64

	✅

Third Party Packages

Danger

These packages are not maintained by LizardByte. Use at your own risk.

Chocolatey

[image: Chocolatey Version]
 [https://community.chocolatey.org/packages/sunshine][image: Chocolatey]

nixpkgs

[image: nixpgs Version]
 [https://github.com/NixOS/nixpkgs/blob/master/pkgs/servers/sunshine/default.nix]

Scoop

[image: Scoop Version (extras bucket)]
 [https://scoop.sh/#/apps?s=0&d=1&o=true&q=sunshine]

Solus

[image: Solus Version]
 [https://dev.getsol.us/source/sunshine]

Winget

[image: Winget Version]
 [https://github.com/microsoft/winget-pkgs/tree/master/manifests/l/LizardByte/Sunshine]

Legacy GitHub Repo

Attention

This repo is not maintained. Thank you to Loki for bringing this amazing project to life!

[image: GitHub Maintainer]
 [https://github.com/loki-47-6F-64/sunshine/releases][image: GitHub last commit][image: GitHub Release Date]

Usage

	See the setup section for your specific OS.

	If you did not install the service, then start sunshine with the following command, unless a start command is listed
in the specified package installation instructions.

Note

A service is a process that runs in the background. Running multiple instances of Sunshine is not
advised.

	Basic usage
	sunshine

	Specify config file
	sunshine <directory of conf file>/sunshine.conf

Note

You do not need to specify a config file. If no config file is entered the default location will be used.

Attention

The configuration file specified will be created if it doesn’t exist.

	Configure Sunshine in the web ui

The web ui is available on https://localhost:47990 by default. You may replace
localhost with your internal ip address.

Attention

Ignore any warning given by your browser about “insecure website”. This is due to the SSL certificate
being self signed.

Caution

If running for the first time, make sure to note the username and password that you created.

	Add games and applications.
	This can be configured in the web ui.

Note

Additionally, apps can be configured manually. src_assets/<os>/config/apps.json is an example of a
list of applications that are started just before running a stream. This is the directory within the GitHub
repo.

	In Moonlight, you may need to add the PC manually.

	When Moonlight request you insert the correct pin on sunshine:

	Login to the web ui

	Go to “PIN” in the Navbar

	Type in your PIN and press Enter, you should get a Success Message

	In Moonlight, select one of the Applications listed

Network

The Sunshine user interface will be available on port 47990 by default.

Warning

Exposing ports to the internet can be dangerous. Do this at your own risk.

Arguments

	To get a list of available arguments run the following:
	sunshine --help

Setup

Linux

The deb, rpm, Flatpak and AppImage packages handle these steps automatically. Third party packages may not.

Sunshine needs access to uinput to create mouse and gamepad events.

	
	Add user to group input, if this is the first time installing.
	sudo usermod -a -G input $USER

	
	Create udev rules.
	echo 'KERNEL=="uinput", GROUP="input", MODE="0660", OPTIONS+="static_node=uinput"' | \
sudo tee /etc/udev/rules.d/85-sunshine-input.rules

	Optionally, configure autostart service

	filename: ~/.config/systemd/user/sunshine.service

	
	contents:
	[Unit]
Description=Sunshine self-hosted game stream host for Moonlight.
StartLimitIntervalSec=500
StartLimitBurst=5

[Service]
ExecStart=<see table>
Restart=on-failure
RestartSec=5s
#Flatpak Only
#ExecStop=flatpak kill dev.lizardbyte.sunshine

[Install]
WantedBy=graphical-session.target

	package

	ExecStart

	Auto Configured

	aur

	/usr/bin/sunshine

	✔

	deb

	/usr/bin/sunshine

	✔

	rpm

	/usr/bin/sunshine

	✔

	AppImage

	~/sunshine.AppImage

	✔

	Flatpak

	flatpak run dev.lizardbyte.sunshine

	✔

	Start once
	systemctl --user start sunshine

	Start on boot
	systemctl --user enable sunshine

	
	Additional Setup for KMS
	
Note

cap_sys_admin may as well be root, except you don’t need to be root to run it. It is necessary to
allow Sunshine to use KMS.

	Enable
	sudo setcap cap_sys_admin+p $(readlink -f $(which sunshine))

	Disable (for Xorg/X11)
	sudo setcap -r $(readlink -f $(which sunshine))

	
	Reboot
	sudo reboot now

macOS

Sunshine can only access microphones on macOS due to system limitations. To stream system audio use
Soundflower [https://github.com/mattingalls/Soundflower] or
BlackHole [https://github.com/ExistentialAudio/BlackHole] and
select their sink as audio device in sunshine.conf.

Note

Command Keys are not forwarded by Moonlight. Right Option-Key is mapped to CMD-Key.

Caution

Gamepads are not currently supported.

	Configure autostart service
	
	MacPorts
	sudo port load Sunshine

Windows

For gamepad support, install ViGEmBus [https://github.com/ViGEm/ViGEmBus/releases/latest]

	Sunshine firewall
	
	Add rule
	cd /d "C:\Program Files\Sunshine\scripts"
add-firewall-rule.bat

	Remove rule
	cd /d "C:\Program Files\Sunshine\scripts"
remove-firewall-rule.bat

	Sunshine service
	
	Enable
	cd /d "C:\Program Files\Sunshine\scripts"
install-service.bat

	Disable
	cd /d "C:\Program Files\Sunshine\scripts"
uninstall-service.bat

Shortcuts

All shortcuts start with CTRL + ALT + SHIFT, just like Moonlight

	CTRL + ALT + SHIFT + N - Hide/Unhide the cursor (This may be useful for Remote Desktop Mode for Moonlight)

	CTRL + ALT + SHIFT + F1/F12 - Switch to different monitor for Streaming

Application List

	Applications should be configured via the web UI.

	A basic understanding of working directories and commands is required.

	You can use Environment variables in place of values

	$(HOME) will be replaced by the value of $HOME

	$$ will be replaced by $, e.g. $$(HOME) will be become $(HOME)

	env - Adds or overwrites Environment variables for the commands/applications run by Sunshine

	"Variable name":"Variable value"

	apps - The list of applications

	Advanced users may want to edit the application list manually. The format is json.

	
	Example application:
	{
 "cmd": "command to open app",
 "detached": [
 "some-command",
 "another-command"
],
 "image-path": "/full-path/to/png-image",
 "name": "An App",
 "output": "/full-path/to/command-log-file",
 "prep-cmd": [
 {
 "do": "some-command",
 "undo": "undo-that-command"
 }
],
 "working-dir": "/full-path/to/working-directory"
}

	cmd - The main application

	detached - A list of commands to be run and forgotten about

	If not specified, a process is started that sleeps indefinitely

	image-path - The full path to the cover art image to use.

	name - The name of the application/game

	output - The file where the output of the command is stored

	prep-cmd - A list of commands to be run before/after the application

	If any of the prep-commands fail, starting the application is aborted

	do - Run before the application

	If it fails, all undo commands of the previously succeeded do commands are run

	undo - Run after the application has terminated

	Failures of undo commands are ignored

	working-dir - The working directory to use. If not specified, Sunshine will use the application directory.

Considerations

	When an application is started, if there is an application already running, it will be terminated.

	When the application has been shutdown, the stream shuts down as well.

	For example, if you attempt to run steam as a cmd instead of detached the stream will immediately fail.
This is due to the method in which the steam process is executed. Other applications may behave similarly.

	In addition to the apps listed, one app “Desktop” is hardcoded into Sunshine. It does not start an application,
instead it simply starts a stream.

	For the Linux flatpak you must prepend commands with flatpak-spawn --host.

HDR Support

Streaming HDR content is supported for Windows hosts with NVIDIA, AMD, or Intel GPUs that support encoding HEVC Main 10.
You must have an HDR-capable display or EDID emulator dongle connected to your host PC to activate HDR in Windows.

	Ensure you enable the HDR option in your Moonlight client settings, otherwise the stream will be SDR.

	A good HDR experience relies on proper HDR display calibration both in Windows and in game. HDR calibration can differ significantly between client and host displays.

	We recommend calibrating the display by streaming the Windows HDR Calibration app to your client device and saving an HDR calibration profile to use while streaming.

	You may also need to tune the brightness slider or HDR calibration options in game to the different HDR brightness capabilities of your client’s display.

	Older games that use NVIDIA-specific NVAPI HDR rather than native Windows 10 OS HDR support may not display in HDR.

	Some GPUs can produce lower image quality or encoding performance when streaming in HDR compared to SDR.

Tutorials

Tutorial videos are available here [https://www.youtube.com/playlist?list=PLMYr5_xSeuXAbhxYHz86hA1eCDugoxXY0].

Community!

Tutorials are community generated. Want to contribute? Reach out to us on our discord server.

Advanced Usage

Sunshine will work with the default settings for most users. In some cases you may want to configure Sunshine further.

Performance Tips

AMD

In Windows, enabling Enahanced Sync in AMD’s settings may help reduce the latency by an additional frame. This
applies to amfenc and libx264.

Nvidia

Enabling Fast Sync in Nvidia settings may help reduce latency.

Configuration

The default location for the configuration file is listed below. You can use another location if you
choose, by passing in the full configuration file path as the first argument when you start Sunshine.

The default location of the apps.json is the same as the configuration file. You can use a custom
location by modifying the configuration file.

Default File Location

	Value

	Description

	Docker

	/config/

	Linux

	~/.config/sunshine/

	macOS

	~/.config/sunshine/

	Windows

	%ProgramFiles%\Sunshine\config

	Example
	sunshine ~/sunshine_config.conf

To manually configure sunshine you may edit the conf file in a text editor. Use the examples as reference.

Hint

Some settings are not available within the web ui.

General

sunshine_name

	Description
	The name displayed by Moonlight

	Default
	PC hostname

	Example
	sunshine_name = Sunshine

min_log_level

	Description
	The minimum log level printed to standard out.

Choices

	Value

	Description

	verbose

	verbose logging

	debug

	debug logging

	info

	info logging

	warning

	warning logging

	error

	error logging

	fatal

	fatal logging

	none

	no logging

	Default
	info

	Example
	min_log_level = info

log_path

	Description
	The path where the sunshine log is stored.

	Default
	sunshine.log

	Example
	log_path = sunshine.log

Controls

gamepad

	Description
	The type of gamepad to emulate on the host.

Caution

Applies to Windows only.

Choices

	Value

	Description

	x360

	xbox 360 controller

	ds4

	dualshock controller (PS4)

	Default
	x360

	Example
	gamepad = x360

back_button_timeout

	Description
	If, after the timeout, the back/select button is still pressed down, Home/Guide button press is emulated.

On Nvidia Shield, the home and power button are not passed to Moonlight.

Tip

If back_button_timeout < 0, then the Home/Guide button will not be emulated.

	Default
	2000

	Example
	back_button_timeout = 2000

key_repeat_delay

	Description
	The initial delay in milliseconds before repeating keys. Controls how fast keys will repeat themselves.

	Default
	500

	Example
	key_repeat_delay = 500

key_repeat_frequency

	Description
	How often keys repeat every second.

Tip

This configurable option supports decimals.

	Default
	
Todo

Unknown

	Example
	key_repeat_frequency = 24.9

keybindings

	Description
	Sometimes it may be useful to map keybindings. Wayland won’t allow clients to capture the Win Key for example.

Tip

See virtual key codes [https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes]

Hint

keybindings needs to have a multiple of two elements.

	Default
	None

	Example
	keybindings = [
 0x10, 0xA0,
 0x11, 0xA2,
 0x12, 0xA4,
 0x4A, 0x4B
]

key_rightalt_to_key_win

	Description
	It may be possible that you cannot send the Windows Key from Moonlight directly. In those cases it may be useful to
make Sunshine think the Right Alt key is the Windows key.

	Default
	None

	Example
	key_rightalt_to_key_win = enabled

Display

adapter_name

	Description
	Select the video card you want to stream.

Tip

To find the name of the appropriate values follow these instructions.

	Linux + VA-API
	Unlike with amdvce and nvenc, it doesn’t matter if video encoding is done on a different GPU.

ls /dev/dri/renderD* # to find all devices capable of VAAPI

replace ``renderD129`` with the device from above to lists the name and capabilities of the device
vainfo --display drm --device /dev/dri/renderD129 | \
 grep -E "((VAProfileH264High|VAProfileHEVCMain|VAProfileHEVCMain10).*VAEntrypointEncSlice)|Driver version"

To be supported by Sunshine, it needs to have at the very minimum:
VAProfileH264High : VAEntrypointEncSlice

Todo

macOS

	Windows
	tools\dxgi-info.exe

	Default
	Sunshine will select the default video card.

	Examples
	
	Linux
	adapter_name = /dev/dri/renderD128

Todo

macOS

	Windows
	adapter_name = Radeon RX 580 Series

output_name

	Description
	Select the display number you want to stream.

Tip

To find the name of the appropriate values follow these instructions.

	Linux
	xrandr --listmonitors

Example output: 0: +HDMI-1 1920/518x1200/324+0+0 HDMI-1

You need to use the value before the colon in the output, e.g. 0.

Todo

macOS

	Windows
	tools\dxgi-info.exe

	Default
	Sunshine will select the default display.

	Examples
	
	Linux
	output_name = 0

Todo

macOS

	Windows
	output_name = \\.\DISPLAY1

fps

	Description
	The fps modes advertised by Sunshine.

Note

Some versions of Moonlight, such as Moonlight-nx (Switch), rely on this list to ensure that the requested
fps is supported.

	Default
	
Todo

Unknown

	Example
	fps = [10, 30, 60, 90, 120]

resolutions

	Description
	The resolutions advertised by Sunshine.

Note

Some versions of Moonlight, such as Moonlight-nx (Switch), rely on this list to ensure that the requested
resolution is supported.

	Default
	
Todo

Unknown

	Example
	resolutions = [
 352x240,
 480x360,
 858x480,
 1280x720,
 1920x1080,
 2560x1080,
 3440x1440,
 1920x1200,
 3860x2160,
 3840x1600,
]

dwmflush

	Description
	Invoke DwmFlush() to sync screen capture to the Windows presentation interval.

Caution

Applies to Windows only. Alleviates visual stuttering during mouse movement.
If enabled, this feature will automatically deactivate if the client framerate exceeds
the host monitor’s current refresh rate.

Note

If you disable this option, you may see video stuttering during mouse movement in certain scenarios.
It is recommended to leave enabled when possible.

	Default
	enabled

	Example
	dwmflush = enabled

Audio

audio_sink

	Description
	The name of the audio sink used for audio loopback.

Tip

To find the name of the audio sink follow these instructions.

	Linux + pulseaudio
	pacmd list-sinks | grep "name:"

	Linux + pipewire
	pactl info | grep Source
in some causes you'd need to use the `Sink` device, if `Source` doesn't work, so try:
pactl info | grep Sink

	macOS
	Sunshine can only access microphones on macOS due to system limitations. To stream system audio use
Soundflower [https://github.com/mattingalls/Soundflower] or
BlackHole [https://github.com/ExistentialAudio/BlackHole].

	Windows
	tools\audio-info.exe

	Default
	Sunshine will select the default audio device.

	Examples
	
	Linux
	audio_sink = alsa_output.pci-0000_09_00.3.analog-stereo

	macOS
	audio_sink = BlackHole 2ch

	Windows
	audio_sink = {0.0.0.00000000}.{FD47D9CC-4218-4135-9CE2-0C195C87405B}

virtual_sink

	Description
	The audio device that’s virtual, like Steam Streaming Speakers. This allows Sunshine to stream audio, while muting
the speakers.

Tip

See audio_sink!

	Default
	
Todo

Unknown

	Example
	virtual_sink = {0.0.0.00000000}.{8edba70c-1125-467c-b89c-15da389bc1d4}

Network

external_ip

	Description
	If no external IP address is given, Sunshine will attempt to automatically detect external ip-address.

	Default
	Automatic

	Example
	external_ip = 123.456.789.12

port

	Description
	Set the family of ports used by Sunshine. Changing this value will offset other ports per the table below.

	Port Description

	Default Port

	Difference from config port

	HTTPS

	47984 TCP

	-5

	HTTP

	47989 TCP

	0

	Web

	47990 TCP

	+1

	RTSP

	48010 TCP

	+21

	Video

	47998 UDP

	+9

	Control

	47999 UDP

	+10

	Audio

	48000 UDP

	+11

	Mic (unused)

	48002 UDP

	+13

Attention

Custom ports are only allowed on select Moonlight clients.

	Default
	47989

	Example
	port = 47989

pkey

	Description
	The private key. This must be 2048 bits.

	Default
	
Todo

Unknown

	Example
	pkey = /dir/pkey.pem

cert

	Description
	The certificate. Must be signed with a 2048 bit key.

	Default
	
Todo

Unknown

	Example
	cert = /dir/cert.pem

origin_pin_allowed

	Description
	The origin of the remote endpoint address that is not denied for HTTP method /pin.

Choices

	Value

	Description

	pc

	Only localhost may access /pin

	lan

	Only LAN devices may access /pin

	wan

	Anyone may access /pin

	Default
	pc

	Example
	origin_pin_allowed = pc

origin_web_ui_allowed

	Description
	The origin of the remote endpoint address that is not denied for HTTPS Web UI.

Choices

	Value

	Description

	pc

	Only localhost may access the web ui

	lan

	Only LAN devices may access the web ui

	wan

	Anyone may access the web ui

	Default
	lan

	Example
	origin_web_ui_allowed = lan

upnp

	Description
	Sunshine will attempt to open ports for streaming over the internet.

Choices

	Value

	Description

	on

	enable UPnP

	off

	disable UPnP

	Default
	off

	Example
	upnp = on

ping_timeout

	Description
	How long to wait in milliseconds for data from Moonlight before shutting down the stream.

	Default
	10000

	Example
	ping_timeout = 10000

Encoding

channels

	Description
	This will generate distinct video streams, unlike simply broadcasting to multiple Clients.

When multicasting, it could be useful to have different configurations for each connected Client.

For instance:

	Clients connected through WAN and LAN have different bitrate constraints.

	Decoders may require different settings for color.

Warning

CPU usage increases for each distinct video stream generated.

	Default
	1

	Example
	channels = 1

fec_percentage

	Description
	Percentage of error correcting packets per data packet in each video frame.

Warning

Higher values can correct for more network packet loss, but at the cost of increasing bandwidth usage.

	Default
	20

	Range
	1-255

	Example
	fec_percentage = 20

qp

	Description
	Quantization Parameter. Some devices don’t support Constant Bit Rate. For those devices, QP is used instead.

Warning

Higher value means more compression, but less quality.

	Default
	28

	Example
	qp = 28

min_threads

	Description
	Minimum number of threads used for software encoding.

Note

Increasing the value slightly reduces encoding efficiency, but the tradeoff is usually worth it to gain
the use of more CPU cores for encoding. The ideal value is the lowest value that can reliably encode at your
desired streaming settings on your hardware.

	Default
	1

	Example
	min_threads = 1

hevc_mode

	Description
	Allows the client to request HEVC Main or HEVC Main10 video streams.

Warning

HEVC is more CPU-intensive to encode, so enabling this may reduce performance when using software
encoding.

Choices

	Value

	Description

	0

	advertise support for HEVC based on encoder

	1

	do not advertise support for HEVC

	2

	advertise support for HEVC Main profile

	3

	advertise support for HEVC Main and Main10 (HDR) profiles

	Default
	0

	Example
	hevc_mode = 2

encoder

	Description
	Force a specific encoder.

Choices

	Value

	Description

	nvenc

	For NVIDIA graphics cards

	quicksync

	For Intel graphics cards

	amdvce

	For AMD graphics cards

	software

	Encoding occurs on the CPU

	Default
	Sunshine will use the first encoder that is available.

	Example
	encoder = nvenc

sw_preset

	Description
	The encoder preset to use.

Note

This option only applies when using software encoder.

Note

From FFmpeg [https://trac.ffmpeg.org/wiki/Encode/H.264#preset].

A preset is a collection of options that will provide a certain encoding speed to compression ratio. A slower
preset will provide better compression (compression is quality per filesize). This means that, for example, if
you target a certain file size or constant bit rate, you will achieve better quality with a slower preset.
Similarly, for constant quality encoding, you will simply save bitrate by choosing a slower preset.

Use the slowest preset that you have patience for.

Choices

	Value

	Description

	ultrafast

	fastest

	superfast

	

	veryfast

	

	superfast

	

	faster

	

	fast

	

	medium

	

	slow

	

	slow

	

	slower

	

	veryslow

	slowest

	Default
	superfast

	Example
	sw_preset = superfast

sw_tune

	Description
	The tuning preset to use.

Note

This option only applies when using software encoder.

Note

From FFmpeg [https://trac.ffmpeg.org/wiki/Encode/H.264#preset].

You can optionally use -tune to change settings based upon the specifics of your input.

Choices

	Value

	Description

	film

	use for high quality movie content; lowers deblocking

	animation

	good for cartoons; uses higher deblocking and more reference frames

	grain

	preserves the grain structure in old, grainy film material

	stillimage

	good for slideshow-like content

	fastdecode

	allows faster decoding by disabling certain filters

	zerolatency

	good for fast encoding and low-latency streaming

	Default
	zerolatency

	Example
	sw_tune = zerolatency

nv_preset

	Description
	The encoder preset to use.

Note

This option only applies when using nvenc encoder. For more information on the presets, see
nvenc preset migration guide [https://docs.nvidia.com/video-technologies/video-codec-sdk/nvenc-preset-migration-guide/].

Choices

	Value

	Description

	p1

	fastest (lowest quality)

	p2

	faster (lower quality)

	p3

	fast (low quality)

	p4

	medium (default)

	p5

	slow (good quality)

	p6

	slower (better quality)

	p7

	slowest (best quality)

	Default
	p4

	Example
	nv_preset = p4

nv_tune

	Description
	The encoder tuning profile.

Note

This option only applies when using nvenc encoder.

Choices

	Value

	Description

	hq

	high quality

	ll

	low latency

	ull

	ultra low latency

	lossless

	lossless

	Default
	ull

	Example
	nv_tune = ull

nv_rc

	Description
	The encoder rate control.

Note

This option only applies when using nvenc encoder.

Choices

	Value

	Description

	constqp

	constant QP mode

	vbr

	variable bitrate

	cbr

	constant bitrate

	Default
	cbr

	Example
	nv_rc = cbr

nv_coder

	Description
	The entropy encoding to use.

Note

This option only applies when using H264 with nvenc encoder.

Choices

	Value

	Description

	auto

	let ffmpeg decide

	cabac

	context adaptive binary arithmetic coding - higher quality

	cavlc

	context adaptive variable-length coding - faster decode

	Default
	auto

	Example
	nv_coder = auto

qsv_preset

	Description
	The encoder preset to use.

Note

This option only applies when using quicksync encoder.

Choices

	Value

	Description

	veryfast

	fastest (lowest quality)

	faster

	faster (lower quality)

	fast

	fast (low quality)

	medium

	medium (default)

	slow

	slow (good quality)

	slower

	slower (better quality)

	veryslow

	slowest (best quality)

	Default
	medium

	Example
	qsv_preset = medium

qsv_coder

	Description
	The entropy encoding to use.

Note

This option only applies when using H264 with quicksync encoder.

Choices

	Value

	Description

	auto

	let ffmpeg decide

	cabac

	context adaptive binary arithmetic coding - higher quality

	cavlc

	context adaptive variable-length coding - faster decode

	Default
	auto

	Example
	qsv_coder = auto

amd_quality

	Description
	The encoder preset to use.

Note

This option only applies when using amdvce encoder.

Choices

	Value

	Description

	speed

	prefer speed

	balanced

	balanced

	quality

	prefer quality

	Default
	balanced

	Example
	amd_quality = balanced

amd_rc

	Description
	The encoder rate control.

Note

This option only applies when using amdvce encoder.

Choices

	Value

	Description

	cqp

	constant qp mode

	cbr

	constant bitrate

	vbr_latency

	variable bitrate, latency constrained

	vbr_peak

	variable bitrate, peak constrained

	Default
	vbr_latency

	Example
	amd_rc = vbr_latency

amd_coder

	Description
	The entropy encoding to use.

Note

This option only applies when using H264 with amdvce encoder.

Choices

	Value

	Description

	auto

	let ffmpeg decide

	cabac

	context adaptive variable-length coding - higher quality

	cavlc

	context adaptive binary arithmetic coding - faster decode

	Default
	auto

	Example
	amd_coder = auto

vt_software

	Description
	Force Video Toolbox to use software encoding.

Note

This option only applies when using macOS.

Choices

	Value

	Description

	auto

	let ffmpeg decide

	disabled

	disable software encoding

	allowed

	allow software encoding

	forced

	force software encoding

	Default
	auto

	Example
	vt_software = auto

vt_realtime

	Description
	Realtime encoding.

Note

This option only applies when using macOS.

Warning

Disabling realtime encoding might result in a delayed frame encoding or frame drop.

	Default
	enabled

	Example
	vt_realtime = enabled

vt_coder

	Description
	The entropy encoding to use.

Note

This option only applies when using macOS.

Choices

	Value

	Description

	auto

	let ffmpeg decide

	cabac

	

	cavlc

	

	Default
	auto

	Example
	vt_coder = auto

Advanced

file_apps

	Description
	The application configuration file path. The file contains a json formatted list of applications that can be started
by Moonlight.

	Default
	OS and package dependent

	Example
	file_apps = apps.json

file_state

	Description
	The file where current state of Sunshine is stored.

	Default
	sunshine_state.json

	Example
	file_state = sunshine_state.json

credentials_file

	Description
	The file where user credentials for the UI are stored.

	Default
	sunshine_state.json

	Example
	credentials_file = sunshine_state.json

GameStream

Nvidia announced that their GameStream service for Nvidia Games clients will be discontinued in February 2023.
Luckily, Sunshine performance is now on par with Nvidia GameStream. Many users have even reported that Sunshine
outperforms GameStream, so rest assured that Sunshine will be equally performant moving forward.

Migration

We have developed a simple migration tool to help you migrate your GameStream games and apps to Sunshine automatically.
Please check out our GSMS [https://github.com/LizardByte/GSMS] project if you’re interested in an automated
migration option. At the time of writing this GSMS offers the ability to migrate your custom games and apps. The
working directory, command, and image are all set in Sunshine’s apps.json file. The box-art image is also copied
to a specified directory.

Limitations

Sunshine does have some limitations, as compared to Nvidia GameStream.

	Automatic game/application list.

	Changing game settings automatically, to optimize streaming.

General

Forgotten Credentials

	If you forgot your credentials to the web UI, try this.
	sunshine --creds <new username> <new password>

Web UI Access

	Can’t access the web UI?
	
	Check firewall rules.

Nvidia issues

	NvFBC, NvENC, or general issues with Nvidia graphics card.
	
	Consumer grade Nvidia cards are software limited to a specific number of encodes. See
Video Encode and Decode GPU Support Matrix [https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new]
for more info.

	You can usually bypass the restriction with a driver patch. See Keylase’s
Linux [https://github.com/keylase/nvidia-patch]
or Windows [https://github.com/keylase/nvidia-patch/blob/master/win] patches for more guidance.

Linux

KMS Streaming fails

	If screencasting fails with KMS, you may need to run the following to force unprivileged screencasting.
	sudo setcap -r $(readlink -f $(which sunshine))

macOS

Dynamic session lookup failed

	If you get this error:
	
Dynamic session lookup supported but failed: launchd did not provide a socket path, verify that
org.freedesktop.dbus-session.plist is loaded!

	Try this.
	launchctl load -w /Library/LaunchAgents/org.freedesktop.dbus-session.plist

Windows

No gamepad detected

	Verify that you’ve installed ViGEmBus [https://github.com/ViGEm/ViGEmBus/releases/latest].

Build

Sunshine binaries are built using CMake [https://cmake.org/]. Cross compilation is not
supported. That means the binaries must be built on the target operating system and architecture.

Building Locally

Clone

	Ensure git [https://git-scm.com/] is installed and run the following:
	git clone https://github.com/lizardbyte/sunshine.git --recurse-submodules
cd sunshine && mkdir build && cd build

Compile

See the section specific to your OS.

	Linux

	macOS

	Windows

Remote Build

It may be beneficial to build remotely in some cases. This will enable easier building on different operating systems.

	Fork the project

	Activate workflows

	Trigger the CI workflow manually

	Download the artifacts/binaries from the workflow run summary

Linux

Requirements

Debian Bullseye

End of Life: TBD

	Install Requirements
	sudo apt update && sudo apt install \
 build-essential \
 cmake \
 libavdevice-dev \
 libboost-filesystem-dev \
 libboost-log-dev \
 libboost-program-options-dev \
 libboost-thread-dev \
 libcap-dev \ # KMS
 libcurl4-openssl-dev \
 libdrm-dev \ # KMS
 libevdev-dev \
 libmfx-dev \ # x86_64 only
 libnuma-dev \
 libopus-dev \
 libpulse-dev \
 libssl-dev \
 libva-dev \
 libvdpau-dev \
 libwayland-dev \ # Wayland
 libx11-dev \ # X11
 libxcb-shm0-dev \ # X11
 libxcb-xfixes0-dev \ # X11
 libxcb1-dev \ # X11
 libxfixes-dev \ # X11
 libxrandr-dev \ # X11
 libxtst-dev \ # X11
 nodejs \
 npm \
 nvidia-cuda-dev \ # Cuda, NvFBC
 nvidia-cuda-toolkit # Cuda, NvFBC

Fedora 36, 37

End of Life: TBD

	Install Requirements
	sudo dnf update && \
sudo dnf group install "Development Tools" && \
sudo dnf install \
 boost-devel \
 cmake \
 gcc \
 gcc-c++ \
 intel-mediasdk-devel \ # x86_64 only
 libcap-devel \
 libcurl-devel \
 libdrm-devel \
 libevdev-devel \
 libva-devel \
 libvdpau-devel \
 libX11-devel \ # X11
 libxcb-devel \ # X11
 libXcursor-devel \ # X11
 libXfixes-devel \ # X11
 libXi-devel \ # X11
 libXinerama-devel \ # X11
 libXrandr-devel \ # X11
 libXtst-devel \ # X11
 mesa-libGL-devel \
 npm \
 numactl-devel \
 openssl-devel \
 opus-devel \
 pulseaudio-libs-devel \
 rpm-build \ # if you want to build an RPM binary package
 wget \ # necessary for cuda install with `run` file
 which # necessary for cuda install with `run` file

Ubuntu 20.04

End of Life: April 2030

	Install Requirements
	sudo apt update && sudo apt install \
 build-essential \
 cmake \
 g++-10 \
 libavdevice-dev \
 libboost-filesystem-dev \
 libboost-log-dev \
 libboost-thread-dev \
 libboost-program-options-dev \
 libcap-dev \ # KMS
 libdrm-dev \ # KMS
 libevdev-dev \
 libmfx-dev \ # x86_64 only
 libnuma-dev \
 libopus-dev \
 libpulse-dev \
 libssl-dev \
 libva-dev \
 libvdpau-dev \
 libwayland-dev \ # Wayland
 libx11-dev \ # X11
 libxcb-shm0-dev \ # X11
 libxcb-xfixes0-dev \ # X11
 libxcb1-dev \ # X11
 libxfixes-dev \ # X11
 libxrandr-dev \ # X11
 libxtst-dev \ # X11
 nodejs \
 npm \
 wget # necessary for cuda install with `run` file

	Update gcc alias
	update-alternatives --install \
 /usr/bin/gcc gcc /usr/bin/gcc-10 100 \
 --slave /usr/bin/g++ g++ /usr/bin/g++-10 \
 --slave /usr/bin/gcov gcov /usr/bin/gcov-10 \
 --slave /usr/bin/gcc-ar gcc-ar /usr/bin/gcc-ar-10 \
 --slave /usr/bin/gcc-ranlib gcc-ranlib /usr/bin/gcc-ranlib-10

Ubuntu 22.04

End of Life: April 2027

	Install Requirements
	sudo apt update && sudo apt install \
 build-essential \
 cmake \
 libavdevice-dev \
 libboost-filesystem-dev \
 libboost-log-dev \
 libboost-thread-dev \
 libboost-program-options-dev \
 libcap-dev \ # KMS
 libdrm-dev \ # KMS
 libevdev-dev \
 libmfx-dev \ # x86_64 only
 libnuma-dev \
 libopus-dev \
 libpulse-dev \
 libssl-dev \
 libwayland-dev \ # Wayland
 libx11-dev \ # X11
 libxcb-shm0-dev \ # X11
 libxcb-xfixes0-dev \ # X11
 libxcb1-dev \ # X11
 libxfixes-dev \ # X11
 libxrandr-dev \ # X11
 libxtst-dev \ # X11
 nodejs \
 npm \
 nvidia-cuda-dev \ # CUDA, NvFBC
 nvidia-cuda-toolkit # CUDA, NvFBC

CUDA

If the version of CUDA available from your distro is not adequate, manually install CUDA.

Tip

The version of CUDA you use will determine compatibility with various GPU generations.
See CUDA compatibility [https://docs.nvidia.com/deploy/cuda-compatibility/index.html] for more info.

Select the appropriate run file based on your desired CUDA version and architecture according to
CUDA Toolkit Archive [https://developer.nvidia.com/cuda-toolkit-archive].

wget https://developer.download.nvidia.com/compute/cuda/11.4.2/local_installers/cuda_11.4.2_470.57.02_linux.run \
 --progress=bar:force:noscroll -q --show-progress -O ./cuda.run
chmod a+x ./cuda.run
./cuda.run --silent --toolkit --toolkitpath=/usr --no-opengl-libs --no-man-page --no-drm
rm ./cuda.run

npm dependencies

	Install npm dependencies.
	npm install

Build

Attention

Ensure you are in the build directory created during the clone step earlier before continuing.

cmake ..
make -j ${nproc}

cpack -G DEB # optionally, create a deb package
cpack -G RPM # optionally, create a rpm package

macOS

Requirements

macOS Big Sur and Xcode 12.5+

Use either MacPorts [https://www.macports.org] or Homebrew [https://brew.sh]

MacPorts

	Install Requirements
	sudo port install avahi boost180 cmake curl libopus npm9 pkgconfig

Homebrew

	Install Requirements
	brew install boost cmake node opus
if there are issues with an SSL header that is not found:
cd /usr/local/include
ln -s ../opt/openssl/include/openssl .

npm dependencies

	Install npm dependencies.
	npm install

Build

Attention

Ensure you are in the build directory created during the clone step earlier before continuing.

cmake ..
make -j ${nproc}

cpack -G DragNDrop # optionally, create a macOS dmg package

	If cmake fails complaining to find Boost, try to set the path explicitly.
	cmake -DBOOST_ROOT=[boost path] .., e.g., cmake -DBOOST_ROOT=/opt/local/libexec/boost/1.80 ..

Windows

Requirements

First you need to install MSYS2 [https://www.msys2.org], then startup “MSYS2 MinGW 64-bit” and execute the following
codes.

	Update all packages:
	pacman -Suy

	Install dependencies:
	pacman -S base-devel cmake diffutils gcc git make mingw-w64-x86_64-binutils \
mingw-w64-x86_64-boost mingw-w64-x86_64-cmake mingw-w64-x86_64-curl \
mingw-w64-x86_64-libmfx mingw-w64-x86_64-openssl mingw-w64-x86_64-opus \
mingw-w64-x86_64-toolchain

npm dependencies

Install nodejs and npm. Downloads available here [https://nodejs.org/en/download/].

	Install npm dependencies.
	npm install

Build

Attention

Ensure you are in the build directory created during the clone step earlier before continuing.

cmake -G "MinGW Makefiles" ..
mingw32-make -j$(nproc)

cpack -G NSIS # optionally, create a windows installer
cpack -G ZIP # optionally, create a windows standalone package

Contributing

Read our contribution guide in our organization level
docs [https://lizardbyte.readthedocs.io/en/latest/developers/contributing.html].

Localization

Sunshine is being localized into various languages. The default language is en (English) and is highlighted green.

[image: ../_images/json2.svg][image: ../_images/json3.svg][image: ../_images/json4.svg][image: ../_images/json5.svg][image: ../_images/json6.svg][image: ../_images/json7.svg][image: ../_images/json8.svg][image: ../_images/json9.svg]
	Graph
	[image: ../_images/translation-15178612-503956.png]

CrowdIn

The translations occur on
CrowdIn [https://crowdin.com/project/sunshinestream]. Feel free to contribute to localization there.
Only elements of the API are planned to be translated.

Attention

The rest API has not yet been implemented.

	Translations Basics
	
	The brand names LizardByte and Sunshine should never be translated.

	Other brand names should never be translated.
Examples:

	AMD

	Nvidia

	CrowdIn Integration
	How does it work?

When a change is made to sunshine source code, a workflow generates new translation templates
that get pushed to CrowdIn automatically.

When translations are updated on CrowdIn, a push gets made to the l10n_nightly branch and a PR is made against the
nightly branch. Once PR is merged, all updated translations are part of the project and will be included in the
next release.

Extraction

There should be minimal cases where strings need to be extracted from source code; however it may be necessary in some
situations. For example if a system tray icon is added it should be localized as it is user interfacing.

	
	Wrap the string to be extracted in a function as shown.
	#include <boost/locale.hpp>
boost::locale::translate("Hello world!")

Tip

More examples can be found in the documentation for
boost locale [https://www.boost.org/doc/libs/1_70_0/libs/locale/doc/html/messages_formatting.html].

Warning

This is for information only. Contributors should never include manually updated template files, or
manually compiled language files in Pull Requests.

Strings are automatically extracted from the code to the locale/sunshine.po template file. The generated file is
used by CrowdIn to generate language specific template files. The file is generated using the
.github/workflows/localize.yml workflow and is run on any push event into the nightly branch. Jobs are only run if
any of the following paths are modified.

- 'src/**'

When testing locally it may be desirable to manually extract, initialize, update, and compile strings. Python is
required for this, along with the python dependencies in the ./scripts/requirements.txt file. Additionally,
xgettext [https://www.gnu.org/software/gettext/] must be installed.

	Extract, initialize, and update
	python ./scripts/_locale.py --extract --init --update

	Compile
	python ./scripts/_locale.py --compile

Testing

Clang Format

Source code is tested against the .clang-format file for linting errors. The workflow file responsible for clang
format testing is .github/workflows/cpp-clang-format-lint.yml.

	Test clang-format locally.
	find ./ -iname *.cpp -o -iname *.h -iname *.m -iname *.mm | xargs clang-format -i

Sphinx

Sunshine uses Sphinx [https://www.sphinx-doc.org/en/master/] for documentation building. Sphinx, along with other
required documentation depencies are included in the ./docs/requirements.txt file. Python is required to build
sphinx docs. Installation and setup of python will not be covered here.

The config file for Sphinx is docs/source/conf.py. This is already included in the repo and should not be modified.

	Test with Sphinx
	cd docs
make html

Alternatively

cd docs
sphinx-build -b html source build

Unit Testing

Todo

Sunshine does not currently have any unit tests. If you would like to help us improve please get in contact
with us, or make a PR with suggested changes.

Legal

Attention

This documentation is for informational purposes only and is not intended as legal advice. If you have
any legal questions or concerns about using Sunshine, we recommend consulting with a lawyer.

Sunshine is licensed under the GPL-3.0 license, which allows for free use and modification of the software.
The full text of the license can be reviewed here [https://github.com/LizardByte/Sunshine/blob/master/LICENSE].

Commercial Use

Sunshine can be used in commercial applications without any limitations. This means that businesses and organizations
can use Sunshine to create and sell products or services without needing to seek permission or pay a fee.

However, it is important to note that the GPL-3.0 license does not grant any rights to distribute or sell the encoders
contained within Sunshine. If you plan to sell access to Sunshine as part of their distribution, you are responsible
for obtaining the necessary licenses to do so. This may include obtaining a license from the
Motion Picture Experts Group (MPEG-LA) and/or any other necessary licensing requirements.

In summary, while Sunshine is free to use, it is the user’s responsibility to ensure compliance with all applicable
licensing requirements when redistributing the software as part of a commercial offering. If you have any questions or
concerns about using Sunshine in a commercial setting, we recommend consulting with a lawyer.

Index

 nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Overview

 		
 About

 		
 System Requirements

 		
 Integrations

 		
 Support

 		
 Downloads

 		
 Stats

 		
 Installation

 		
 Binaries

 		
 Docker

 		
 Linux

 		
 AppImage

 		
 AUR Package

 		
 Debian Package

 		
 Flatpak Package

 		
 RPM Package

 		
 macOS

 		
 pkg

 		
 Portfile

 		
 Windows

 		
 Installer

 		
 Standalone

 		
 Docker

 		
 Important note

 		
 Build your own containers

 		
 SUNSHINE_VERSION

 		
 SUNSHINE_OS

 		
 Tags

 		
 Where used

 		
 Port and Volume mappings

 		
 Using docker run

 		
 Using docker-compose

 		
 Parameters

 		
 Supported Architectures

 		
 Third Party Packages

 		
 Chocolatey

 		
 nixpkgs

 		
 Scoop

 		
 Solus

 		
 Winget

 		
 Legacy GitHub Repo

 		
 Usage

 		
 Network

 		
 Arguments

 		
 Setup

 		
 Linux

 		
 macOS

 		
 Windows

 		
 Shortcuts

 		
 Application List

 		
 Considerations

 		
 HDR Support

 		
 Tutorials

 		
 Advanced Usage

 		
 Performance Tips

 		
 AMD

 		
 Nvidia

 		
 Configuration

 		
 General

 		
 sunshine_name

 		
 min_log_level

 		
 log_path

 		
 Controls

 		
 gamepad

 		
 back_button_timeout

 		
 key_repeat_delay

 		
 key_repeat_frequency

 		
 keybindings

 		
 key_rightalt_to_key_win

 		
 Display

 		
 adapter_name

 		
 output_name

 		
 fps

 		
 resolutions

 		
 dwmflush

 		
 Audio

 		
 audio_sink

 		
 virtual_sink

 		
 Network

 		
 external_ip

 		
 port

 		
 pkey

 		
 cert

 		
 origin_pin_allowed

 		
 origin_web_ui_allowed

 		
 upnp

 		
 ping_timeout

 		
 Encoding

 		
 channels

 		
 fec_percentage

 		
 qp

 		
 min_threads

 		
 hevc_mode

 		
 encoder

 		
 sw_preset

 		
 sw_tune

 		
 nv_preset

 		
 nv_tune

 		
 nv_rc

 		
 nv_coder

 		
 qsv_preset

 		
 qsv_coder

 		
 amd_quality

 		
 amd_rc

 		
 amd_coder

 		
 vt_software

 		
 vt_realtime

 		
 vt_coder

 		
 Advanced

 		
 file_apps

 		
 file_state

 		
 credentials_file

 		
 GameStream

 		
 Migration

 		
 Limitations

 		
 General

 		
 Forgotten Credentials

 		
 Web UI Access

 		
 Nvidia issues

 		
 Linux

 		
 KMS Streaming fails

 		
 macOS

 		
 Dynamic session lookup failed

 		
 Windows

 		
 No gamepad detected

 		
 Build

 		
 Building Locally

 		
 Clone

 		
 Compile

 		
 Remote Build

 		
 Linux

 		
 Requirements

 		
 Debian Bullseye

 		
 Fedora 36, 37

 		
 Ubuntu 20.04

 		
 Ubuntu 22.04

 		
 CUDA

 		
 npm dependencies

 		
 Build

 		
 macOS

 		
 Requirements

 		
 MacPorts

 		
 Homebrew

 		
 npm dependencies

 		
 Build

 		
 Windows

 		
 Requirements

 		
 npm dependencies

 		
 Build

 		
 Contributing

 		
 Localization

 		
 CrowdIn

 		
 Extraction

 		
 Testing

 		
 Clang Format

 		
 Sphinx

 		
 Unit Testing

 		
 Legal

 		
 Commercial Use

_images/translation-15178612-503956.png
de

en

en-GB

enus

esES

fr

u

10

20

30

40

50

60

70

80

%

100

_static/minus.png

_static/plus.png

_static/file.png

_static/sunshine.png

